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Temperature Distribution in a Composite of Opaque
and Semitransparent Spectral Layers

Robert Siegel*

NASA Lewis Research Center, Cleveland, Ohio 44135

The analysis of radiative transfer becomes computationally complex for a composite when there are
multiple layers and multiple spectral bands. A convenient analytical method is developed for combined
radiation and conduction in a composite of alternating semitransparent and opaque layers. The semi-

transparent layers absorb, scatter, and emit radiation, and spectral properties with large scattering are
included. The two-flux method is used, and its applicability is verified by comparison with a basic solution
in the literature. The differential equation in the two-flux method is solved by deriving a Green's function.
The solution technique is applied to analyze radiation effects in a multilayer zirconia thermal barrier

coating with internal radiation shields for conditions in an aircraft engine combustor. The zirconia ra-
diative properties are modeled by two spectral bands. Thin opaque layers within the coating are used to
decrease radiant transmission that can degrade the zirconia insulating ability. With radiation shields, the

temperature distributions more closely approach the opaque limit that provides the lowest metal wall

temperatures.
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blackbody spectral energy in vacuum. K,

W/m: /_m; i_, = e,Jo'T]t
fraction of blackbody energy from A = 0 to the A

lower or upper wavelength limit of the s $5

spectral band cr
= two-flux spectral flux quantity, W/m _ /xm; 0-, 1

_ = Ga/o'T]I
= Green's function for G,(X) in semitransparent O,_j

jth layer
= convective heat transfer coefficients at external

boundaries, W/m _"K; H = hlo'T3_l Subscripts

= spectral extinction coefficient of the __ j, j

semitransparent jth layer, a,j + (r,a, m l, u
= thermal conductivity of the jth layer, W/m K;

N_ = kih:rT_iD, r

= quantity K_D_I3(1 - D._)I"= s, S
= refractive index of semitransparent material A

= heat flux. W/m:; c_ = q/crT_

= total heat flux by radiation and conduction in

x direction, W/m =

= radiant spectral energy incident at hot and cold

sides. W/m-" /xm. Fig. 1

= gas temperatures on hot and cold sides of

composite, K, Fig. 1
= absolute temperature in jth layer, K; tj = Tj/T_.,

= effective blackbody temperatures of

surroundings outside of hot and cold sides, K
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= coordinate in jth layer, m, Fig. la; X, = xj/D_

= emissivity of opaque metal barrier (radiation

shield)
= emissivities of opaque materials (as measured

in environment with n = 1) at left and right

boundaries of semitransparent jth layer, Fig. 2

= emissivities at external boundaries, Fig. 1

= optical thickness of jth layer in the s

wavelength band, K,jD_

= wavelength of radiation, _m
= integration coordinate in Green's function
= Stefan-Boltzmann constant, W/m 2 K"

= scatteringlcoefficient in the semitran'.,parent jth
layer, m

= scattering albedo in semitransparent jth layer,

¢r,Aj/KxI

= in the jth or Jth layer of the composite
= lower and upper limits of the s spectral band,

respectively
= radiative
= in the s or S spectral band

= spectral quantity

Superscript
~ = dimensionless quantity

Introduction

N analytical method is developed to determine heat trans-
A fer in a multilayer composite where alternate layers are

semitransparent. Computations for a composite can become

complex when many layers are involved and they have spectral

property variations. The method is applied to examine the heat
transfer characteristics of thermal barrier coatings.

Thermal barrier coatings are important for many high-tem-

perature applications, including combustor liners, turbine
vanes, and rotating blades for current and advanced aircraft

engines. Some of the insulating materials used for coatings.
such as zirconia, which currently has widespread use, are par-

tially transparent to thermal radiatio n)-3 Internal radiative
transfer effects are increased as temperatures are raised to ob-

tain higher engine efficiencies. The radiative transfer can act
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as an apparent increase in thermal conductivity that can de-

grade the insulating material effectiveness. It is necessary to

quantitatively estimate the radiation effect, and if necessary,
provide a means for reducing radiative transfer.*

A possible reduction method is to place opaque barriers

within the coating to act as radiation shields, such as thin metal

foils with a high melting temperature. The result is a composite

of alternating semitransparent and opaque layers (Fig. 1). As

stated earlier, the computations become more difficult as the

number of layers is increased, and also when spectral bands

must be included, as for zirconia. This paper will develop a

convenient analytical procedure for obtaining the temperature

distribution and heat flow within such a composite. The

method can include large scattering in the semitransparent lay-
ers, which is typical of a thermal protection material such as

zirconia. Results including radiation within the semitransparent
insulating material are compared with heat conduction calcu-

lations with internal radiation neglected; in this limiting case,

radiant absorption and emission occur only at the external sur-
faces.

Internal radiation effects in a thermal barrier coating were

demonstrated in Ref. 5, where an analytical procedure was

developed using the two-flux equations for the radiative con-

tribution. The two-flux method includes, without difficulty, the

large scattering characteristic of a material such as zirconia.

The analysis in Ref. 5 considered two spectral regions, one

semitransparent and the other opaque, that approximated zir-

conia transmission behavior.' The analysis was improved in

Ref. 6 to incorporate a wider range of spectral property vari-

ations and optical thicknesses. This was done by deriving a

Green's function that provides an analytical solution for the

two-flux differential equation. The analytical relations incor-

porate the two-point boundary conditions that must be satisfied

for the solution in a semitransparent layer, and this simplifies

obtaining a converged iterative solution for the temperature

distribution. A convergence procedure was provided that works
well.

The development of a Green's function for a single layer 6?

is expanded here for use in multiple layers, as in Fig. 1, where
each semitransparent layer has opaque boundaries. As dem-

onstrated for several cases in Ref. 8, the two-flux equations
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Fig. 1 Geometry and nomenclature for a multilayer composite
of alternate semitransparent and opaque layers with external ra-

diation and convection at both exposed surfaces: a) nomenclature
for a general series of layers and b) a soot-covered thermal barrier

coating on a metal wall, with internal opaque radiation shields.

provide accurate results for single spectral layers with diffuse

boundaries, as assumed here. Hence, the two-flux method is

used to provide a simplified procedure, because the exact spec-

tral radiative transfer equations including large scattering be-

come rather complicated for multiple layers with spectral prop-

erties. The analytical expressions provide the temperature

distribution and heat flow in a composite of alternate semi-

transparent and opaque layers. Results are given for the re-

duction in radiative effects in a thermal barrier coating on a

combustor liner, when shields are introduced within the sem-

itransparent insulation (Fig. lb). The outside of the coating

exposed to the hot environment has an opaque layer of soot.

The cooled side of the coating is bounded by the metal wall
of the combustor.

Analysis

A composite consists of alternate semitransparent and

opaque layers (Fig. la). An example is a multilayer thermal

barrier coating on a metal wall, where successive semitrans-

parent insulating layers are bounded by internal opaque metal

radiation shields (Fig. lb). In each semitransparent layer, the

total heat flux is the sum of radiation and conduction; from

energy conservation, the total flux is constant in the x direction.

Heat flows through the opaque layers by conduction only. The

temperature distribution in each semitransparent layer can be

obtained by integrating the energy equation, to give _'_

1 1 G,(x_ = O) - G,(xfl dA
T,(x,)= r(x, = O)- _ q,,,,xj- -j _o K,j

(1)

To obtain the temperature distribution from this relation, the

q .... and the T(x_ = 0) and G,(xfl for each layer, must be de-
termined as will be described.

The flux quantity G,(.,:fl in each semitransparent layer is ob-

tained by solving a second-order differential equation, _ that

includes the local blackbody emission, e,b(x,)

d_G,(x_)

dx_ 3K_;(I - l),_flG,(x,)= -3K_,(I - [_fl4n_e,_(.r;)

(2)

The e,_(xfl is obtained by iteration during the solution, since
the temperature distribution is unknown.

Two boundary conditions are required for solving Eq. (2)

in each semitransparent layer. At x, = 0, in Fig. 2, the adja-

cent opaque barrier has an emissivity e0,. Note that tabulated

emissivity values are for emission into surroundings with a

refractive index of one; for emission into a material with re-

fractive index n,, a multiplying factor n_ must be included.

Then, the boundary condition for Ga(x_ = 0), at the left bound-

Semitransparent
material

aN. %x_, ni, I_

/-- c0j glj -_

Tj(X;)

x_=x/Di

x/Dj = 1

x_=o x,=

Fig. 2 Geometry and boundary
emissivities for a single semitrans-

parent layer between opaque walls;
this is a basic unit for the Green's
function solution.
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ary of the semitransparent jth layer (Fig. 2), in the composite

coating is'

At the right side of the jth layer in Fig. 2, x, = D r, the emis-
sivity of the opaque boundary (for emission into surroundings
with a refractive index of one) is e b- The boundary condition

is then _

GA.rj= D) + _ - 1 dx ,,=z,,
(3b)

A solution for Eq. (2), in analytical form, that satisfies the

boundary conditions Eqs. (3a) and (3b) is obtained by deriving
a Green's function. Following the procedure in Ref. 7 (that

had different boundary conditions), the Green's function in

terms of dimensionless variables is derived as

condition of a partially transmitting surface can be included,

as given in Ref. 6. For a thermal barrier coating, an opaque
boundary can be produced by the semitransparent material

having a soot coating as in a combustor; this is shown at xt =

0 in Fig. lb. At the cooled side of the composite, the semi-

transparent coating is on an opaque metal wall (Fig. lb). The
total heat flux at the opaque surface x_ = 0, consists of con-

vection and radiation exchange. The spectral radiation flux in-
cident from the external surroundings is qA, dA, and so the

heat balance becomes, with the assumption that the surface at

xL =0isgray

q,,,, = h_[T_ - T_(x_ = 0)1 + eo,[q,, - o'T_(x_ = 0) 7] (7a)

where q,_ is the incident radiation flux including energy at all

wavelengths. A similar relation is written for the external

boundary at the right side of the composite in Fig. 1:

q,,,, = h2[TAx., = DA - T_2I + _:,,,[crTj(xs = D_) 4 - q,,.l (7b)

g,(X. _) =
I[sinhhma,(I _- _)+ Bl,lm,jcoshm,j(1- _j)]m,,Denom,j [sinhmasXj + BOAjm*jc°shma'X'l

/[sinhrn,_:_j+ BO,_,m_,/cosh t,l,:_:] [sinhm^_(1 - X,)+ Bl,,mAjcosh rn,,(1 - X,)]
t.[ maj DenomAj A

where X, = .r,/D,, and the denominator in Eq. (4a) is

DenomAj = (1 + BO,_,Bl,_jrn]j)sinh nb,

+ (BOAj + BI,j)maj cosh rn_j (4b)

The Green's function gA(X, _) is used to account for the

nonhomogeneous term in Eq. (2), when computing the solution

for GAXj)- To obtain the complete solution for GA(Xj), the so-
lution is needed for the homogeneous part of Eq. (2). Follow-

ing the procedure in Ref. 7. this solution is

(_ha(Xj) = C_ sinh m_,Xj + DA_ cosh rn,sX _ (5a)

The boundary conditions, Eqs. (3a) and (3b), are applied to

give the following relations to evaluate D,,, and then C_:

(5b)

4
D,_ - [(sinh in,: + Blooms, cosh m_,)

Denom_

X nfF,AX, = O) + BO,,m,,n_Fae(X = 1)1

D_j - 4n_F,b(X_= O)

n0x3 t}'l _,t

(5c)
CA1 =

By adding O_,AX) from Eq. (5) to the nonhomogeneous so-
lution obtained by using the Green's function, gAX), the so-

lution of Eq. (2) is

_0 IG,(X,) = G,,,(X_) + 4m],n_ ga(X), _)F:,,,(X_ = _) d_ (6)

Now that the solution for G,(x)) has been obtained, relations

will be found for T(xj = 0) for each semitransparent layer, and

for q ..... as needed to evaluate Eq. (1) for the semitransparent

layers. These quantities are obtained by writing a total energy
flux relation for each layer in the composite.

At each outer boundary of the composite in Fig. la or lb,
it is assumed that there is either an opaque coating or layer,

so that radiation from the surroundings cannot be transmitted

through the surface. For a clean semitransparent boundary, the

o<-x,<_

_<X_ <-- 1

(4a)

For an opaque material, such as a metal wall, heat is trans-

ferred only by conduction, and so by using the temperature

difference across any opaque layer of finite thickness in Fig.

la or lb

q,o, = (kj/D_)[Tfix_ = 0) - Tfixj = D_)] (7c)

If there is a very thin opaque barrier between the j and j + 1

semitransparent layers, it is assumed that there is negligible

temperature change across the barrier, and so the continuity of

temperature gives T_(x_ = D,) = T_, _(x_ _ = 0).
For each semitransparent layer, the total heat flow is given

by Eq. (1) as

kj

q,o, = _,, [T_(xj = O) - TAx , = DA]

1 _ G,_(xl = O) - G_s(x _ = D_) dA

(7d)

Equations (7) are written for each external boundary and for

each layer, if the Gs_(x_) are known, as will be obtained in the
iterative solution, this provides a set of simultaneous equations

that can be solved numerically for q,,,, and for the temperature

at each interface. The temperature distribution in each layer is

then found by using Eq. ( I ), with the integral term omitted for

an opaque layer. The converged solution for T(x) in all of the

layers is found by iteration, as will be described.

Multiple Spectral Band Form of the Radiative Relations
For a material like zirconia, that is currently used for turbine

engine thermal barrier coatings, the semitransparent spectral

region extends to a cutoff wavelength of about 5 lain. beyond
which the extinction coefficient becomes quite large and the

coating is usually assumed opaque? _ Multiple spectral bands
for zirconia or other semitransparent insulating materials can

be used to include spectral property variations in the semitrans-

parent region. The relations are given here for S spectral bands
(s = 1..... S), in the region h = 0 to h°s, where A,,s is at the
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upper limit of the S band, and the coating is opaque in the

range A > Aus above the upper limit of the S band.

To obtain the temperature distribution in each semitranspar-
ent layer, Eq. (1) is summed over the s bands from s = 1 to S

in the semitransparent region, to give in dimensionless form

,[ 1t,(xj) = tj(x, = o) - _ _,o,X_- _ ,o, K,_

(8)

To obtain _;,(X), Eq. (6) is used for each band in the form

Y0(_j(X,) = (_h.(K) + 4m_jn_ g,j(X_, _)t_(_)4{F.,itj(¢)]

- F,Jt,(_:)l} dE (9)

where (_j,(X) and g,j are evaluated using the properties in the

s band. The F_(t) is the fraction of blackbody energy for emis-

sion at temperature t, in the wavelength range A = 0 to A,_,

where A., is at the upper limit of the s band, and F_ corre-

sponds to the lower limit of the band, A = Aj_. The F(t) was

evaluated from the summation form in Ref. 9. The band form
of Eq. (7d) is

calculation to investigate convergence when radiation is dom-

inating. It was necessary for stability to use a damping factor

of 0.05 to reduce the temperature change between iterations,

and about 100 iterations were required for convergence. Good

agreement was obtained with the exact solution, as will be
shown.

Results and Discussion

Some illustrative results will be given for the behavior of

thermal barrier coatings with and without internal radiation

shields in the environment of a turbine engine combustion

chamber. First, however, a comparison is made of results

from the present method with a fundamental solution in the

literature. The additional effect of internal radiation shields

will be shown for the fundamental boundary conditions of a

layer between black walls at specified temperatures. The be-

havior is found to be quite different from that in an engine

environment with convective and radiative boundary condi-
tions.

Results are given in Ref. 10 for temperature distributions by

combined radiation and conduction in a gray medium between

black opaque walls. The Green's function developed here ap-

plies for that situation. The case selected for comparison is

shown in Fig. 3a; the semitransparent layer is between black

4,o,= _[t,(x: = o) - t,(x, = l)]

l _ (?,,_(x_= o) - C_j(x, = 1)+ - (I0)
3 s = I Ksj

Solution Method

An iterative solution was used to obtain t(X) in all of the

layers, and it was found to give rapid convergence for the

calculations made here for the engine environment. Less than

20 iterations were usually required to reach convergence to

five figures in the dimensionless temperature. For parameters

typical of an engine, the heat transfer depends more on con-

duction than radiation. For other situations, where radiation is

more dominant, the convergence rate can be considerably re-

duced, and it is usually necessary to use a damping factor to

provide a small change between iterations and to run hundreds

of iterations. Because convection and conduction are more im-

portant than radiation in an engine environment, the heat con-

duction solution, with all layers assumed opaque, was used as

a first guess for the temperature distribution throughout the

composite. Then, using the radiation properties for each spec-

tral band, the Green's function was evaluated from Eq. (4) for

each spectral band in each semitransparent layer, and the ho-

mogeneous solution in each layer was evaluated from Eq. (5).

Double precision was used for all evaluations. Using Eq. (9)

(evaluated by Romberg integration using a standard computer

subroutine), then gave the two-flux quantity G_j(Xj) for each

semitransparent layer and spectral band. Equations (7), written

for each external interface and for each layer, were then solved

numerically for Q,,,, the tX0 ) for each layer, and tj(l); a com-

puter subroutine was used based on Newton's method. Then,

Eq. (8) was used to evaluate the temperature distribution tj(Xj)

in each semitransparent layer. These temperature distributions

were used to start the next iteration using Eqs. (4) and (5), and

the procedure was continued until t_(Xj) converged. As dis-

cussed earlier, convergence was rapid for an engine environ-

ment because the final solutions are fairly near the solutions

with only heat conduction, and so it is a good approximation

to assume opaque layers to begin the iteration. The accuracy

of typical results was checked using 21, 41, and 81X_ points.
To further examine the basic solution method, a radiation-

dominated case was evaluated and compared with the results

of an exact solution in the literature, for a layer between two

opaque walls at specified temperatures. The solution for con-

duction, as the only mode of transfer, was used to start the
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Fig. 3 Comparison with the classical solution of a semitranspar-
ent layer between two black opaque walls, and the effect an in-

ternal opaque shield. Parameters: T(0) = 1666.7 K, T(D) = 833.3

K, N = ka/4o.T(O) 3 = 0.02916: a) comparisons of the present two-

flux Green's function solution with an exact solution, _° using the

radiative transfer equations (this solution is dominated by radia-
tion) and b) the effect of an internal opaque radiation shield with
emissivities _ = 0, 0.2, and 1.
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wallswiththespecifiedtemperatureof thecoolerwallequal
toone-halfthetemperatureofthehotterwall.Theresultsare
forasmallvalueoftheconduction-radiationparameter,N =

ka/4o-T(O) 3 = 0.02916, using the definition of N in Ref. 10.

For these conditions, radiation has a large influence, and the

q,,,, values in Fig. 3a are much larger when radiation is in-

cluded. This is in contrast with a turbine engine environment,

where conduction and convection effects are more dominating,

and the conduction-radiation parameter is much larger. As

shown on Fig. 3a, the temperatures and heat flux results from

the two-flux solution are in good agreement with the solution

from Ref. 10, where the equations of radiative transfer were

solved for an absorbing material without scattering. This com-

parison indicates that the results that follow for a combustor

should be accurate, because they have a smaller effect of ra-

diation; it is the radiative term that is being approximated by

the two-flux assumption. Other comparisons of two-flux and

exact solutions are shown in Ref. 8, for layers with boundaries

that are partially transmitting rather than opaque, as in the

present analysis.
As an example of applying the present solution method for

multiple layers, Fig. 3b shows the effect on the temperature

distribution and heat flux by introducing an opaque barrier

(radiation shield) at the center of the layer in Fig. 3a. Results

are given for three emissivities on both sides of the barrier,

er,, = 1.0, 0.2, and the limit emb "-> 0 (perfectly reflecting bar-

rier). A barrier prevents the direct transmission of radiation

across the entire layer, but radiation is still transmitted within

each half of the layer and has a significant effect on the tem-

perature distribution. Even a black radiation shield has a con-
siderable effect, as is evident by comparison with the unob-

structed layer in Fig. 3a. At the black barrier there is radiative

absorption and re-emission, and the net radiative heat flow
must be carried through by heat conduction. The q,o, values in

Fig. 3 show that the energy flow is considerably reduced by

the shield for this situation, where radiation is large compared

with conduction. Since radiation cannot be transmitted through

the shield, emission from the high-temperature boundary at

x = 0 is concentrated more within the left half of the layer,

and its temperatures are raised; whereas the temperatures in

the right half decrease (compare with Fig. 3a). As the barrier

emissivity is decreased and, hence, reflected energy is in-

creased, the temperatures in the cooler half of the layer are

closer to the line for an opaque layer, where there is only heat

conduction. Reflections from the barrier retain energy in the

hotter side of the layer, where temperatures are increased. The

total heat flux with a perfectly reflecting barrier is about three

times that for an opaque layer, as a result of radiative transfer

within the semitransparent material.

The method developed here is now applied for a thermal

barrier coating. Results in Fig. 4 are for typical conditions in

an aircraft engine combustor. The geometry is like that in Fig.

lb. For Fig. 4a, an alloy steel combustor liner, 0.794 mm thick,

is protected by a 1.0-mm-thick zirconia coating. For an ad-

vanced engine, the combustion chamber pressure is high

enough that the combined gas and soot radiation are assumed

to provide a black environment at T,1 = T_. This specifies the

spectral (blackbody) distribution of the incident radiation. As

is likely in practice, the exposed surface of the coating is as-

sumed to be covered with soot. This provides a thin opaque

coating with an emissivity assumed as e,oo, = 0.97 (soot re-

flectivity = 0.03). Energy is absorbed by the soot layer and is

reradiated into the surroundings and the zirconia coating. The

zirconia spectral radiation properties were approximated from

Ref. 1 as having a semitransparent band at wavelengths A =

0-5 /zm, with absorption and scattering coefficients, a_ = 30

m _ and o'_a = 10,000 m -I, respectively; the zirconia is thus

a highly scattering material. The zirconia is assumed opaque

for A > 5 p,m. The effective blackbody surroundings temper-

atures and the convection parameters are in the caption of

Fig. 4. At the cooled side of the composite, it is assumed that

I---
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Fig. 4 Temperature distributions in a zineonia thermal barrier

coating on the wall of a ¢ombustor, compared with an opaque
thermal barrier coating. The effect of 1 or 2 internal radiation

shields is shown rot a shield emissivity of 0.20. Parameters (units

are in the Nomenclature): h_ = 250, h2 = 110, k, = 0.8, k= = 33, _=

= 0.794.10 -3, n = 1.58, T,I = T=I = 2000, and Tg= = 800; for semi-

transparent coating a, = 30 and (r,, = 10,000 for A = 0-5 bzm;
and the coating is opaque for A > 5 p.m: thickness of zinconia

coating, a) 1 and b) 2 ram.

the metal surface is radiating into large blackbody surround-

ings at T,: = T_:, in addition to being convectively cooled.
The cooled surface is assumed oxidized with an emissivity

of 0.6. The internal surface of the metal wall that is in contact

with the coating is assumed to be clean, with an emissivity

of 0.3.

The solid line in Fig. 4a that has the lowest temperatures in

the metal wall is for the limit where internal radiation is ne-

glected and, hence, the coating is opaque; there is radiative

exchange only at the coating surface. When the coating is par-

tially transparent, internal radiant emission and transmission

increase the energy transfer ability within the coating. This can

be thought of as an increase in an effective thermal conduc-

tivity of the coating. It produces increased metal temperatures

compared with an opaque coating; 40 K higher lbr this ex-

ample for a coating without an internal radiation shield (upper

dotted line in Fig. 4a).
When an internal shield with an emissivity of e_ = 0.20 is

placed at the center plane of the coating, the radiative transfer

is reduced, and the temperatures (dot-dash line) are closer to

the opaque limit; the metal temperature is reduced relative to

the coating without a barrier, and is now 24 K above the

opaque limit. The addition of a second barrier, so that the
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coatingisdividedintothreeequalparts,providesafurther
reductioninmetaltemperatureof 7 K.Theverythinshields
mustbemadeofa metalwithahighermeltingtemperature
thanthealloysteelwall.

If possible,a thickerzirconiacoatingcouldbeusedina
combustortoreducethemetaltemperatures.As an illustration

of the effect of coating thickness, results for a coating 2 mm

thick are in Fig. 4b. The metal temperatures are considerably
reduced by the increased insulation thickness, but the effect of

semitransparency remains similar to that in Fig. 4a. Without

any internal radiation barrier, the metal wall temperature is

increased about 56 K, as a result of partial transparency of the

coating. With two radiation shields having emissivities of 0.20,

the effect of radiation is reduced, so that the metal wall tem-

perature is about 32 K above the opaque limit. Further de-

creases can be obtained if it is possible to reduce the emissivity

of the shields as shown in Fig. 5.

So that the temperature scale can be expanded, only the

temperatures in the metal wall are shown in Fig. 5. In Fig. 5a,

for a coating thickness of 1 mm, metal temperatures are in-

cluded for the results in Fig. 4a, with emb = 0.20, and two lines

are added that are closer to the opaque limit. These are for one

and two barriers having an emissivity of e_.b = 0.05. This il-

lustrates the effect of a smaller shield emissivity on reducing

the metal wall temperatures. At elevated temperatures, how-
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Fig. 5 Temperature distributions in the metal wall for a semi-

transparent thermal barrier coating on the wall of a combustor,

compared with an opaque thermal barrier coating. The effect of
1 or 2 internal shields is shown for shield emissivities of 0.05 and

0.20. Parameters are the same as for Fig. 4: thickness of zirconia
coating, a) 1 and b) 2 ram.

ever, it may not be possible to have an emissivity this small,

as metal emissivities increase with temperature.

Similar results are in Fig. 5b for a zirconia coating thickness

of 2 mm. The relative positions of the temperature lines and

the effect of shield emissivity are the same, but the tempera-

tures have been decreased by the increased coating thickness.

The total heat fluxes in Fig. 5b are somewhat reduced by the

thicker zirconia layer compared with Fig. 5a. The radiation

shields have a relatively small effect on the total heat flow

because the heat flow is quite dependent on conduction and

convection for combustor conditions.

Concluding Remarks
The solution for radiative transfer in multilayer composites

can become complex when there are spectral property varia-

tions and scattering is large. A convenient solution method was

developed to determine temperature distributions and heat

flows for a composite composed of alternate semitransparent

and opaque layers. As an example of its use, the analysis was

applied to study the effect of internal radiation barriers (radi-

ation shields) in a layer of semitransparent material. The so-

lution was compared for verification, with a classical case in

the literature for a layer between two black walls at specified

temperatures, and the effect of internal radiation shields was

illustrated. The method was then applied to examine radiative

effects on temperature distributions in semitransparent zirconia

thermal barrier coatings on a metal wall, and the effects of

introducing opaque internal radiation barriers into the coating
were shown.

The two-flux method was used in the radiative transfer anal-

ysis. This can be readily applied for materials with high scat-

tering, such as zirconia that is presently used for thermal bar-

rier coatings. The two-flux differential equation was solved by

obtaining a Green's function. This provided convenient ana-

lytical expressions that were incorporated into an iterative nu-

merical solution for internal temperatures and the total heat
flOW,

Illustrative solutions for temperatures in zirconia thermal

barrier coatings were obtained for parameters typical of a tur-

bine engine combustor. A two-spectral-band approximation

was used for the zirconia radiative properties. One radiation

barrier was found to reduce by about one-half the effect on

the metal wall temperature of internal radiation in the coating.

The method can be readily applied to examine other ranges of

parameters. The results for a combustor, where there are large

effects of conduction and convection, were contrasted with

those for a layer between parallel walls with large radiative
transfer relative to conduction.

References

_Wahiduzzaman, S., and Morel, T., "'Effect of Translucence of

Engineering Ceramics on Heat Transfer in Diesel Engines," Oak

Ridge National Lab. Rept., Sub/88-22042/2, Oak Ridge, TN, April
1992.

2Manhews, L. K., Viskanta, R., and Incropera, E P., "'Combined

Conduction and Radiation Heat Transfer in Porous Materials Heated

by Intense Solar Radiation," Journal of Solar Energy Engineering,
Vol. 107, No. 1, 1985. pp. 29-34.

'Makino, T., Kunitomo, T., Sakai, I., and Kinoshita, H., "Thermal

Radiative Properties of Ceramic Materials," Transactions of the Ja-

pan Society of Mechanical Engineers, Vol. 50, No. 452. 1984, pp.
1045 - 1052.

"Committee on Coatings for High-Temperature Structural Materi-

als, "Coatings for High-Temperature Structural Materials," National

Academy of Sciences, National Academy Press, Appendix B, Wash-

ington, DC, 1996, pp. 65, 66.

_Siegel, R., "Internal Radiation Effects in Zirconia Thermal Barrier

Coatings," Journal of Thermophysics and Heat Transfer, Vol. 10, No.
4, 1996, pp. 707-709.

"Siegel, R., "'Green's Function to Determine Temperature Distri-



SIEGEL 539

butioninaSemitransparentThermalBarrierCoating,"Journal of

Thermophysics and Heat Transfer, Vol. 11, No. 2, 1997, pp. 315-

318.

7Siegel. R., '_Two-Flux and Green's Function Method for Transient
Radiative Transfer in a Semitransparent Layer," Proceedings of the

1st International Symposium on Radiative Heat Transfer (Ku_adasi,

Turkey). Begell House, New York, 1996. pp. 473-487.

"Siegel, R., and Spuckler, C. M., "Approximate Solution Methods

for Spectral Radiative Transfer in High Refractive Index Layers,"

International Journal of Heat and Mass Transfer, Vol. 37, Suppl. 1,

1994, pp. 403-413.

'_Siegel, R., and Howell, J. R., Thermal Radiation Heat Transfer,

3rd ed., Hemisphere, Washington, DC, 1992, pp. 23 and 33.
_°Viskanta, R., and Grosh, R. J.. "Heat Transfer by Simultaneous

Conduction and Radiation in an Absorbing Medium," Journal of Heat

Transfer, Vol. 84, No. 1. 1962, pp. 63-72.


